If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-26x+44=0
a = 1; b = -26; c = +44;
Δ = b2-4ac
Δ = -262-4·1·44
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-10\sqrt{5}}{2*1}=\frac{26-10\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+10\sqrt{5}}{2*1}=\frac{26+10\sqrt{5}}{2} $
| 2x-9=7-(4-x)= | | x^2+26x+44=0 | | 2x/5=x-6 | | (2x+1)+3=7+x= | | (11-2x)+8=-x+4= | | X-12/100*x=352 | | -11+x=(9+2x)-4= | | 5x-10=102x×2 | | 1800=3x | | 2.16/x-0.01x3+x=2.16 | | 3u+2=4u-7 | | 5n+5=2n-17 | | 1/x-9=2/7-3x | | 5=3x*38 | | 1/x-9=2; | | a×-3=15 | | 7y+3y=2y+56 | | ×+3=1a | | 4-e=2e+8 | | Z=1.2x3 | | 12-3x^2=9x^2 | | 24=9u+3 | | 3+9h=75 | | 2*(6x+8)=3*(2x-1) | | 40-x=30+2x | | 6x-12=3x+4 | | -7w-4=5(w+4) | | -8=2x=-24+16x | | -2(w-6)=-7w-28 | | 6v+10=8(v+2) | | -8u+2(u-2)=-10 | | 7(y+4)+8=7y=36 |